Estimation of Gastrointestinal Transit Time in the West African Mud Turtle, *Pelusios castaneus* (Schwinger 1812) using Contrast Radiography

Folayemi Omotomilola Olayinka-Adefemi, Godwin Inalegwu Ogbole¹, Adenike Olatunji-Akioye

Department of Veterinary Surgery and Reproduction, Faculty of Veterinary Medicine, University of Ibadan, ¹Department of Radiology, College of Medicine, University of Ibadan, Ibadan, Nigeria

Abstract

Background: Gastrointestinal (GI) transit time is a useful diagnostic technique routinely done around the world in human medicine. In veterinary medicine, however, this has only been done in few species in developed nations. With veterinary science, still developing in many parts of Africa, this technique is not routinely done. Our aim was to determine GI transit (GIT) time in *Pelusios castaneus*, a small sized group of freshwater pleurodira turtles that inhabit the tropics of West Africa.

Materials and Methods: The study group comprised four males and four females with a mean weight of 0.81 ± 0.37 kg. Using a routine feeding technique, 10 ml of dilute barium sulfate suspension was administered orally and the GIT time of the contrast observed and monitored through radiography. The transit time was recorded in hours as it traveled through each section of the GIT. The time for complete contrast excretion was recorded for each turtle.

Results: The contrast mean transit time from the mouth through the esophagus to the stomach was $1.06 \pm 0.20 \, h$ and the mean onset of gastroduodenal transit was $4.05 \pm 0.09 \, h$ while mean intestinal transit time was $245.90 \pm 53 \, h$. The mean total contrast excretion time was $10.8 \pm 2.4 \, d$ ays. The female excretion time was shorter than the males (males: $13.7 \pm 3.33 \, d$ ays; females: $7.8 \pm 3.27 \, d$ ays), but this was not statistically significant. Our findings were at variance with results obtained among freshwater turtle species that inhabit temperate climates. **Conclusion:** These findings suggest an influence of turtles' natural habitat climatic conditions on their GIT time and possibly digestion.

Keywords: Contrast radiography, Pelusios castaneus, transit time

Address for correspondence: Dr. Folayemi Omotomilola Olayinka-Adefemi, Department of Veterinary Surgery and Reproduction, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200284, Nigeria. E-mail: folayemiadefemi@gmail.com

INTRODUCTION

The West African mud turtles (*Pelusios castaneus*) are a group of freshwater turtles belonging to the family Pelomedusidae.^[1] They are scattered around the river basins of Western and Middle African countries such as Nigeria, Ghana, Gabon, Mali, and Congo.^[2]

Access this article online			
Quick Response Code:	Website:		
	www.wajradiology.org		
	DOI: 10.4103/1658-354X.206808		

Unlike most turtle species listed by the International Union for the conservation of nature (IUCN) as endangered and extinct, *P. castaneus*, face no global threat of extinction.^[3] Recent reports, however, indicate some threats to this specie in their immediate environment. These include

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Olayinka-Adefemi FO, Ogbole GI, Olatunji-Akioye A. Estimation of gastrointestinal transit time in the West African Mud Turtle, *Pelusios castaneus* (Schwinger 1812) using contrast radiography. West Afr J Radiol 2017;24:147-51.

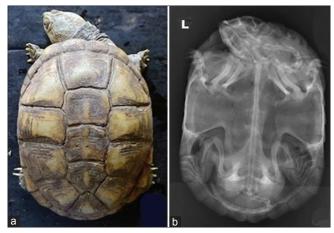
practices such as habitat disruption, slaughter during traditional cultural practices, inhumane capture and transport as well as trade in the wildlife market as pets.^[4,5] These factors pose a threat to the medical well-being of turtles and reptiles in general.

Although studies have been done on the digestive tract of fresh and Sea turtles in other parts of the world, report that gives insight into the digestive tract of *P. castaneus* is sparse.^[6,7] The aim of this study is to describe probably for the first time the radiographic pattern and contrast transit time in the digestive tract of this tropical West African turtles.

MATERIALS AND METHODS

Eight adult *P. castaneus* comprising four males and four females with mean body weight of 0.81 ± 0.37 kg were used in this study; however, the age of the turtles was not considered. Approval for the study was obtained from the Institutional Review Board and the Animal Care and Use Research Ethics Committee, University of Ibadan (Reference No. UI-ACUREC/App/2015/041). The turtles were acquired during the months April to July 2015 and kept in a simulated natural environment in the university laboratory and research unit. They were housed in box cages occasionally and allowed a daily swim in an artificial pond.

The turtles were manually restrained and the contrast barium sulfate (READI-CAT®) was administered through 10 ml syringe tubing orally at a concentration of 80% w/w, volume 7–10 ml/kg per os.


The digital X-ray equipment (Allegers®) was used to create dorsoventral view images of the turtles using machine settings of 70 kV, 200 mA for 0.3 s. The images were recorded at 0, 15, and 30 min, and subsequently at 1, 2, 24, and every 36 h till total and complete contrast excretion for each turtle was achieved.

All quantitative results were analyzed for mean and standard error values as well as the p-values using the GraphPad® Prism (GraphPad Software, Inc. California, USA) statistical software pack.

RESULTS

Control

Preliminary images (gross images and dorsoventral plain radiographs) which served as the study control gross images of the turtle showed a hard carapace while the plain radiographs of the turtles displayed a radio-opaque bony structures and carapace surrounding a

Figure 1: (a) Dorsal carapacial view of *Pelusios castaneus*. (b) Dorsoventral plain radiographic view of *P.castaneus* in which the coelomic cavity appear radiolucent, Bone and the Shell structures are radio-opaque

Figure 2: Radiograph depicting the radio-opaque contrast material within the esophagus on exiting the oral cavity

Figure 3: Contrast column within the oesophagus and stomach/gastric region at 2hrs post administration. The stomach is seen as pear shaped and located to the left

radiolucent coelomic cavity with indistinguishable visceral structures [Figure 1].

Contrast in the esophagus

At 0 min, the barium sulfate contrast is seen outlining the oral cavity before it progresses to the cranial first part of the esophagus. The average esophageal transit time was 1.06 ± 0.2 h [Figure 2]. In one of the turtles, the contrast was seen to have fully traversed the esophagus and moved into the stomach in an early as 30 min.

Gastroduodenal and intestinal contrast transit time

The mean time of onset for gastroduodenal transit for the eight turtles was 4.05 ± 0.90 h [Figure 3] while the mean intestinal contrast transit time was 245.90 ± 53.12 h . The contrast material can be seen outlining the pear shaped stomach and entire intestinal tract (S; Stomach, D; Duodenum, J; Jejunum, IL; Ileum , CR; Colon-Rectum as seen in Figure 4), signifying a very slow intestinal travel time in this species.

The mean total contrast excretion time was 10.8 ± 2.4 days, with a range of 2–21 days.

DISCUSSION

This study provided radiographic information useful in outlining the anatomy of the digestive tract of *P. castaneus*, which is essential in understanding the unique anatomy of their tract.

Figure 4: Dorsoventral radiographic X-ray view showing contrast outlining the entire Intestinal tract. S;Stomach, D;Duodenum, J; Jejunum, IL;Ileum, CR; Colon- Rectum

The associated radiographic anatomic details would allow elucidation and proper management of pathologies such as foreign body obstructions, intestinal ulcerations, and digestive tract lesions. Other field applications of the knowledge of the gastrointestinal (GI) transit time is in the development of efficient diet plans and feed formulations by pet nutritionist, conservation facilities, and turtle pet owners. The information from this study may help identify turtle feed formulation that may interrupt the physiologic transit time patterns and range.

In addition, the study revealed a sex variation in transit time, as male had a comparatively longer transit time compared to females. Although the difference appeared small and not statistically significant (P < 0.05 is considered statistically significant), it raises a concern which a larger study with an appropriate population sample size may help clarify [Table 1]. Nevertheless, this subtle gender difference may be as a result of hormonal or genetic factors, and the clinical relevance would be an interesting issue to investigate in future studies among this species.

Turtles have a unique rate of metabolism.^[8] As ectotherms, they rely predominately on heat from their environment for internal metabolic processes such as respiration and digestion.^[9] Like other reptiles, they have a decreased resting metabolism, which consequently cumulates in decreased energy requirements hence digestion is a much slower process in them when compared with other classes of animals.^[10]

Diagnostic imaging of the digestive tract of reptiles has been documented in some reptiles such as the ball python, *Python regius* and the green iguana, *Iguana iguana*.^[11,12] In chelonians, GI studies to show the transit time of contrast was reported in the spur-thighed tortoise, *Testudo graeca*, the Hermann's tortoise, *Testudo hermanni*, the loggerhead sea turtle, *Caretta caretta*, and in the South American freshwater turtle, *Podocnemis unifilis*.^[13-16]

The findings from this study showed that transit time in the *P. castaneus* was slow with the longest transit time recorded during intestinal travel. This agrees with observations of Di Bello (2006) in his study "*Contrast radiography of the gastrointestinal tract of sea turtles*" and Banzato's (2013) "*Review*

Table 1: Summary of transit and excretion time of barium sulphate in Pelusios castaneus, in males and females

			•	,	
Sex	Weight	Esophageal transit time (h)	Onset of gastroduodenal transit (h)	Intestinal transit time (h)	Total contrast excretion time (h)
Male	0.62±0.16	0.92±0.14	5.67±1.5	313.3±64.49	13.7±3.33
Female	1.00±0.44	0.75±0.25	3.33±0.58	178.5±73.84	7.8±3.27
Р		0.18	0.47	0.22	0.18

P<0.05 is considered statistically significant (P signifies the P-value)

Table 2: Summary of transit and excretion time in *Pelusios*

Parameter	Time (h)
Esophageal transit time	1.06±0.20
Onset of gastroduodenal transit	4.05±0.90
Intestinal transit time	245.90±53.12
Total contrast excretion time	10.8±2.4*

^{*}Total contrast excretion time in days. Statistical values were calculated using the GraphPad® Prism statistical software pack

of diagnostic imaging of Snakes and Lizards" that intestinal transit time is longer in chelonians and reptiles respectively.

The total contrast emptying time in the turtles used in this study was 10.8 ± 2.4 days [Table 2]. This greatly differed from similar studies on sea turtles and freshwater turtles. The total transit time in the yellow spotted Amazon river turtle, *P. unifilis* was on average 17.6 days, the loggerhead sea turtle *C. caretta*; 20.2 days, *Podocnemis expansa*; 22.5 days, *T. graeca*; 26.5 days and *Geochelone carbonaria*; 42 days. [17-19] The above figures indicate that although the transit time in the *P. castaneus* was long as expected in any reptile (when compared with mammals), its transit time is shorter when compared with other reported chelonians.

A study by Spencer (1998) may best explain the findings of this study. In his study on the "The diet and digestive energetics of the Australian short-necked turtle, Emydura macquari?" he concluded that environmental temperature influenced digestion in Testudines. [20] The geographical location of the P. castaneus is the muddy waters of countries like Nigeria, Mali, Ghana, Gabon located in Western and Middle Africa (latitude 4°N and 28°N, longitude 15° E and 16°W) where the climate is classified as hot or tropical.^[21] These regions have been characterized has having a uniformly high temperature (as high as 35°C) and sunshine throughout the year.^[22] The increased temperatures in these regions is thought to hasten the metabolism processes in the P. castaneus. Previous studies that have been done were in chelonians in Europe and South America (the Greek tortoise, the loggerhead sea turtles, yellow spotted Amazon river turtle) where temperate climate temperatures can go as low at - 10°C. Therefore, it is extrapolated from this study that Tropical climate of the natural habitat of the P. castaneus is most likely responsible for the shorter contrast excretion time that was observed.

Another study that may additionally explain these findings is the relationship between metabolic rates and body size as described by Martinez (2010). This study reported that metabolic rate increases with decreased body size in endotherms especially in birds and this was similar in Reptiles.^[23] The results of this study may corroborate this finding as the *P. castaneus* is small sized, 7–12 inches than

previously studied turtles.^[24] The freshwater turtle *P. unifilis* has a size range of 14–27 inches and *C. caretta* can reach a size of about 35 inches when fully grown. Therefore, turtle size may also explain this difference in contrast excretion time.

Age factor was not considered as a parameter in this study as the aging of reptiles generally and turtles specifically, remain an aspect of modern science still been explored. While *P. castaneus* have been documented to achieve a maximum longevity of about 41 years in the wild, techniques such as the use of growth rings or skeletochronology used in age estimation of turtles have been described as unreliable and almost impossible to accurately perform.^[25]

CONCLUSION

The results of this study create a baseline radiological database for the *P. castaneus* which has not been documented before this study. This creates a radiological reference for clinicians and a scientific reference for conservationists, educationist, and Herpetologists. A scientific bank that will be useful for research comparisons and whose information can be extrapolated for other turtles, giving a better understanding of *Testudines*, as a scientific group.

Financial support and sponsorship

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Rhodin GJ, Pritchard PC, Van Dijik, PP, Samuel RA. Conservation biology of fresh water turtles: A compilation project of the IUCN/SSC tortoise and fresh water Turtle Specialist group. Chelonian Res Monogr 2014;5:321-479.
- Maran J. Les tortues continentales du Gabon. La Tortue, n58-59, p. 44-67.
- IUCN. The IUCN Red List of Threatened Species. Version 2014.3. Available from: http://www.iucnredlist.org. [Downloaded on 2016 Jan 14].
- Olukole SG, Oyeyemi MO, Oke BO. Anatomy of the male reproductive organs of the African side necked turtle (*Pelusios castaneus*). AJA 2014;3:380-5.
- CITES. Convention on International Trade in Endangered Species: World Official Newsletter of the Parties 2003, Appendix III; 2003.
- Orós J, Torrent A, Calabuig P, Déniz S. Diseases and causes of mortality among sea turtles stranded in the Canary Islands, Spain (1998-2001). Dis Aquat Organ 2005;63:13-24.
- Folayemi OA, Zainab A, Adenike OA, Inalegwu O, Samuel GO. Intestinal ulceration in West African Mud Turtle (*Pelusios castaneus*). Worlds Vet J 2016;6:25-8.
- King G. Reptiles and Herbivory. 1st ed. London: Chapman and Hall; 1996.
- $9. \quad Garnett\,ST.\,Metabolism\,and\,survival\,of\,fasting\,estuarine\,crocodiles.$

- J Zool 2009;208:493-502.
- 10. Karasov WH, Dejours P, Bolis L, Taylor CR, Weibel ER. Comparative Physiology: Life in Water and on Land. Berlin; New York: Liviana Press, Springer Verlag; 1986. p. 181-91.
- 11. Banzato T, Selleri P, Veladiano I, Martin A, Zanetti E, Zotti A. Comparative evaluation of the cadaveric, radiographic and computed tomographic anatomy of the heads of green iguana (*Iguana iguana*), common tegu (*Tupinambis merianae*) and bearded dragon (*Pogona vitticeps*). Anat Histol Embryol 2013;42:453-60.
- Banzato T, Hellebuyck T, Van Caelenberg A, Saunders JH, Zotti A. A review of diagnostic imaging of snakes and lizards. Vet Rec 2013;173:43-9.
- Meyer J. Gastrografin as a gastrointestinal contrast agent in the Greek tortoise (*Testudo hermanni*). J Zoo Wildl Med 1998;29:183-9.
- 14. Holt PE. Radiological studies of the alimentary tract in two Greek tortoises (*Testudo graeca*). Vet Rec 1978;103:198-200.
- Valente AL, Parga ML, Velarde R, Marco I, Lavin S, Alegre F, et al. Fishhook lesions in loggerhead sea turtles. J Wildl Dis 2007;43:737-41.
- 16. Lopes LA. Determinação do tempo do trânsito gastrintestinal em Podocnemis expansa Schweigger, 1812 (tartaruga-da-amazônia) (Testudines, Podocnemididae) 52f Dissertação (Mestrado em Ciências Veterinárias)-Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia; 2006.

- 17. Di Bello A, Valastro C, Staffieri F, Crovace A. Contrast radiography of the gastrointestinal tract in sea turtles. Vet Radiol Ultrasound 2006;47:351-4.
- Santos AL, Ferriera CG, Pinto JG, Lima CA, Veira LG, Brito FM. Radiographic anatomy aspects and gastrointestinal transit time in *Podocnemis unifilis*, Troschel. 1848 (Testudines, Podocnemididae). Maringa 2010;32:431-5.
- 19. Pizzutto CS, Mariana AN, Guimaraes MA, Correa SH. Radiological anatomy and barium sulfate contrast transit time in the gastrointestinal tract of the red-footed tortoise (*Geochelone carbonaria*). Bol Asoc Herpetol Esp 2001;1:32-6.
- 20. Spencer RJ, Thompson MB, Hume ID. The diet and digestive energetics of an Australian short-necked turtle, Emydura macquarii. Compa. Biochem. Physiol 1998;121:341-349.
- 21. White HP, Gleave MB. An Economic Geography of West Africa. New York: Harper Collins Publishers; 1971.
- 22. Jarrett HR. Geography of West Africa. London Evans Brothers Limited: Evans Bros; 1980.
- 23. Martinez del Rio C, Karasov WH. Body size and temperature: Why they matter. Nat Educ Knowl 2010;3:10.
- 24. Vitt L, Caldwell J. Herpetology. 3rd ed. Waltham, Massachusetts: Academic Press; 2008.
- 25. Doug PA, Ronald JB. Estimating ages of turtles from growth data. Chelonian Conserv Biol 2014;13:9-15.

New features on the journal's website

Optimized content for mobile and hand-held devices

HTML pages have been optimized of mobile and other hand-held devices (such as iPad, Kindle, iPod) for faster browsing speed. Click on [Mobile Full text] from Table of Contents page.

This is simple HTML version for faster download on mobiles (if viewed on desktop, it will be automatically redirected to full HTML version)

E-Pub for hand-held devices

EPUB is an open e-book standard recommended by The International Digital Publishing Forum which is designed for reflowable content i.e. the text display can be optimized for a particular display device.

Click on [EPub] from Table of Contents page.

There are various e-Pub readers such as for Windows: Digital Editions, OS X: Calibre/Bookworm, iPhone/iPod Touch/iPad: Stanza, and Linux: Calibre/Bookworm.

E-Book for desktop

One can also see the entire issue as printed here in a 'flip book' version on desktops.

Links are available from Current Issue as well as Archives pages.

Click on <a> View as eBook