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Abstract

This review analyzes the significance of artificial intelligence (AI) and deep learning (DL) approaches used in radiology in neurosurgery patients and compares AI applications with human models to determine the applicability of AI in disease diagnosis, decision-making, and outcome prediction. A systematic review was conducted from 1997 to 2020 from the PubMed (MEDLINE) database. The search strategy adhered to guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The keywords used for the literature search included “Deep learning,” “Neurosurgery,” “Artificial Intelligence,” “Brain,” “Magnetic resonance imaging-MRI Brain,” and “Machine learning.” The studies focusing on the significance of DL and comparing AI applications with radiologists or clinical experts to enhance diagnostic protocols were included, whereas non-English articles, animal studies, articles lacking full text, and publications such as commentaries, technical notes, abstracts, editorials, opinions, and letters were excluded. A total of 24 articles were included in the review. The P value was observed in 44 out of 63 outcome measures (70%), out of which in 26 out of 63 outturn measures, artificial application subset machine learning (ML) has a significant edge over clinical diagnosis (P < 0.05). The review highlights the potential impact of AI-driven advancements in clinical radiology on enhancing treatment plans for neurosurgery patients, emphasizing the benefits of early intervention, cost reduction, time-saving approaches, and judicious health-care resource utilization. The study’s limitations include potential constraints in identifying relevant literature due to the selected search scope and inclusion criteria, not including studies published outside the specified timeframe and database, and a small number of included studies. Consequently, there is a risk of overlooking innovative methodologies or ground-breaking studies contributing to a more comprehensive understanding of AI applications in neurosurgery. Furthermore, the exclusion of certain publication types, such as commentaries, and conference papers may limit the diversity of different perspectives. However, the study highlights the potential of ML in neurosurgery and the importance of addressing variability in study design, patient populations, and outcome measures in future research to enhance the applicability of AI-driven approaches in clinical practice. It is imperative to recognize and address these challenges to understand the opportunities and limitations inherent in the integration of AI in neurosurgical practice.
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INTRODUCTION

Artificial intelligence (AI) is a broader discipline and fast-growing field that enables machines to mimic human cognitive behavior. These machines require human intelligence, computer algorithms, and recognizable rule-based systems to display properties of intelligence through driving knowledge from data.[1] Machine learning (ML), as a discipline of AI, is a branch of data science involving statistical model application to data using computers and enabling algorithms (computer programs) to learn associations of predictive power from existing data without explicit programming to forecast new data points.[2] The integration of AI and ML holds significant promise in neurosurgery, where precision and timely decision-making are dominant.

The main objective of this systematic review is to compare ML available algorithms performance in neurosurgery patients in comparison to clinical experts to gain insight into recent advancements in AI approaches to further strengthen neurosurgical patients’ perioperative care decision-making. The implications of such advancements extend far beyond solely the technical aspects, rather they bear the potential to create profound enhancements in patient outcomes, reductions in mortality rates, and advancements in neurosurgical practices. Through a comprehensive examination of ML algorithms, this review aims to explain the extent to which AI-driven approaches can enhance and refine perioperative care decision-making processes in neurosurgery. By delineating the strengths and limitations of AI applications in comparison to conventional clinical expertise, this investigation would provide critical insights into the transformative potential of AI in enhancing the quality, efficiency, and efficacy of neurosurgical patient care.
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LITERATURE REVIEW

ML algorithms can be further divided into supervised, reinforcement, and unsupervised learning algorithms. Supervised learning involves computer program training to associate data input and output through the output of interest analysis defined by the supervisor (ground truth) and label input data with required output. In unsupervised learning, data do not require explicit labeling and, based on the underlying distribution model, produces data representation.[3] Recent machine learning (ML) algorithms, specifically supervised learning algorithms, include artificial neural networks (ANNs), support vector machines (SVMs), decision trees, K-nearest neighbors, linear discriminant analysis (LDA), and Naïve Bayes. In contrast, fuzzy C-means (FCM) is an unsupervised learning algorithm. Deep learning (DL), a subclass of ML, utilizes deep neural networks with many hidden layers. DL methods enable the use of multiple layers to process large amounts of data, allowing machines to discover the necessary representations for tasks such as classification and detection. It is made possible due to recent computational advancements and led to fundamental advancements in ML.[4,5] The relationship of AI with its subsets: ML, DL, and neural networks is shown in Figure 1.
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Since ML requires a large data set without explicit programming, in medical research and clinical neurosurgical care, ML still requires comprehensive validation before implementation. Neurosurgery research and clinical practice are ideal for ML model application as complex therapeutic and diagnostic modalities generate a huge amount of data with a rich assortment which is ideal for AI tools, especially ML models to improve neurosurgical care through improved, précised, and efficient perioperative predictive analysis through integration of all patient-relevant factors including extraction of deep features such as genomic data histological or radiological images, etc., in a way which is more complicated and complex for clinician to integrate risk factors and outcome predictors into single prognosis.[6-8]
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METHODS
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Search approach

This systematic review adheres to the guidelines outlined by the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” to comprehensively identify relevant studies about the integration of DL models into neurosurgery and their comparison with the expertise of radiologists or clinical professionals to improve diagnostic protocols.

The search strategy primarily involves querying the PubMed and MEDLINE databases. The research question guiding the literature search has been refined to focus on assessing “The significance and impact of artificial intelligence in neurosurgical patient care, specifically examining deep learning models, and comparing their effectiveness with clinical experts.” The search strategy employs a comprehensive set of terms relevant to the study domain, including “Deep learning,” “Neurosurgery,” “Artificial Intelligence,” “Brain,” “Magnetic resonance imaging-MRI Brain,” and “Machine learning.”
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Inclusion and exclusion criteria

To ensure the inclusion of pertinent studies, eligibility criteria have been meticulously established. The search encompasses articles published between 1997 and 2020, with a strict language restriction to English. Studies that were included focused exclusively on neurosurgical patients, specifically targeting those that compare AI applications using machine learning (ML) with clinical expert practices. Neurosurgical patients were categorized as individuals eligible for neurosurgical treatment at any stage of their illness. There are no predefined limitations regarding disease diagnosis, screening, prognosis, treatment, or outcome.

Exclusion criteria encompass articles in languages other than English, animal studies, conference papers, books/book chapters, and those lacking full-text availability. In addition, the search strategy is augmented by manually screening the reference lists of potentially eligible articles. The duplicated studies were removed and the titles/abstracts were reviewed to identify papers that are pertinent to the present study’s topic. Table 1 outlines the PICO elements guiding the search strategy. It helps clarify the specific aspects considered in the search strategy, guiding the selection of relevant studies.

[image: Table 1]Population, Intervention, Comparator, and Outcome elements for search strategy
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Assessing eligibility

In assessing the eligibility of studies for inclusion in this systematic review, stringent criteria were established to ensure both relevance and quality. First, all clinical studies providing data on the significance and impact of AI in neurosurgery patients were considered eligible for inclusion. These studies were required to directly address the application of AI in neurosurgical patient care, encompassing areas such as diagnostic accuracy, treatment planning, or outcome prediction. In addition, to maintain consistency and accuracy in evaluation, only articles written in English were deemed suitable for inclusion, reflecting the authors’ proficiency in the language. This criterion aimed to facilitate thorough assessment and interpretation of study content. Conversely, certain types of publications, including commentaries, technical notes, abstracts, editorials, opinions, and letters, were excluded from consideration. Such formats typically lack original research findings or provide insufficient data for systematic review purposes. Furthermore, research involving biomechanical assessments on animals and in vitro studies were excluded, as they did not align with the specific focus on clinical applications of AI in neurosurgery patients. Through the application of these inclusion and exclusion criteria, the systematic review sought to ensure the selection of only the most relevant and high-quality studies, thereby enhancing the validity and reliability of the review’s findings.

Back to Top

Study selection and data collection

The quality analysis of selected studies was ranked by two assessors individualistically, and in case of any disparity, it was fixed through dialog. The data for each included study consisted of the following details author and year of publication, output and input features, outcome measures for machine model and clinician model (natural intelligence), P value, and validation methods. Due to data heterogeneity, quantitative synthesis was considered inappropriate. Instead, a qualitative assessment of outcome risk of bias was conducted using narrative analysis.

Initially, titles of articles were manually screened, and those relevant to the research topic were considered for further evaluation. Subsequently, if the abstracts corresponded with the study’s focus, the full texts of the articles were retrieved for thorough examination. Articles lacking full-text availability were excluded from the analysis at this stage. In addition, a manual screening of bibliographies was conducted to identify additional relevant studies. All articles identified through these procedures underwent comprehensive evaluation, with their eligibility for inclusion being deliberated among the researchers to ensure consensus.
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Data items

Two assessors independently conducted a quality analysis of the selected studies, resolving any discrepancies through dialog and consensus building to ensure the reliability and validity of the quality assessment. Data extraction from each included study was thorough, capturing key details such as the author and year of publication, output and input features, outcome measures for both machine and clinician models, P value, and validation methods used. This comprehensive approach aimed to provide a detailed understanding of each study’s methodology and findings, facilitating a robust analysis in line with the review’s objectives. Given the heterogeneity of the collected data, quantitative synthesis was deemed inappropriate, and instead, a qualitative assessment of the studies’ outcomes and risk of bias was conducted through narrative synthesis. The study selection process began with the manual screening of article titles, followed by the examination of abstracts corresponding with the study’s focus. Full-text retrieval was conducted for articles meeting the inclusion criteria, while those lacking full-text availability were excluded. In addition, a manual screening of bibliographies was performed to identify any additional relevant studies. Throughout the selection process, all articles underwent a comprehensive evaluation to determine their eligibility for inclusion, with the research team deliberating to ensure consensus and minimize bias.
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Data analysis

The included studies’ applicability and risks of biases were evaluated using the “Quality Assessment of Diagnostic Accuracy Studies”-2 tool. This evaluation assessed the risk of bias in four domains: patient selection, index test, reference standard, and flow and timing. Each domain was assessed for risk of bias and applicability, with judgments categorized as “low,” “unclear,” or “high” risk. Disagreements between assessors were resolved through discussion.
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RESULTS

In this systematic review, a total of 6652 citations were retrieved during the initial search from both PubMed (MEDLINE) 1452 citations and from additional database 5200 citations. However, after detailed screening, 1100 nonduplicate citations were identified. Five thousand four hundred and sixty-five articles were excluded based on their abstract and titles, resulting in 87 articles being studied for their full-text details, 53 articles were excluded after full-text screening, and 10 articles were excluded during data extraction as no comparison with clinical experts was found. Finally, a total of 24 articles were included for the review to assess the significance of AI applications in neurosurgical patients’ diagnosis, prognosis, and preoperative preparation for treatment. The flow diagram of the search strategy and inclusion criteria for this review study is illustrated in Figure 2.

[image: Figure 2]Flow diagram for the searches and inclusion criteria in the study



Considering the statistical measures, the most frequent measure used was accuracy 12 (50% of the studies), followed by area under curve (AUC) 10 (41.7%), sensitivity 8 (33%), and specificity 12 (20.8%), respectively, both for the ML and clinical model [Figure 3]. The P value was observed in 44 outturn measures including accuracy, sensitivity, specificity, AUC, positive predictive value (PPV), high-grade glioma, false discovery rate, negative predictive value, digital span forward [DSF], F-measure, speed, dice similarity coefficient [DSC], and low-grade glioma) out of overall 63 outcome measures (70%), out of which in 26 out of 63 outturn measures, artificial application subset ML has a significant edge over clinical diagnosis (P < 0.05) [Figures 4 and 5].

[image: Figure 3]Outcome measures for machine learning model
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[image: Figure 5]Area under curve comparison among machine learning and clinician model



Table 2 shows a description of the machine models used to evaluate the significance of AI in clinical radiology. The table evaluated recruited studies for diagnostic input tools used, their ML model used, clinical expert outcome, the outcome of the ML model, validation methodology, statistical variables, and diagnostic or grading criteria. Out of 24 studies, 12 studies have emphasized the diagnostic capability of AI applications using magnetic resonance imaging (MRI) brain as a primary diagnostic parameter in comparison to clinical experts. Out of these 12 studies, 4 studies[9-12] focused on tumor diagnostic cataloging among the pediatric population through differentiation of “posterior fossa tumor.” The major input characteristics applied to these were brain MRI along with age and gender in Table 2.

[image: Table 2]Description of artificial intelligence applications (machine learning model) performance in comparison to clinicians, validation technique, machine learning model for diagnosis, preoperative plan, segmentation, localization, and outcome measure
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DISCUSSION

The objective of this systemic review was to evaluate the significance and impact of AI analogous enactment “ML models” in neurosurgery patient pollution to help attain better treatment plans. The use of AI applications including ML and “CNNs” if provided with adequate teaching datasets could result in self-explanatory patient beneficiary performances along with expertise from clinical experts. This ultimately improves diagnostic accuracy which ultimately aids in correct decisions and treatment plans for patients.

AI possesses the capability to enhance the results for patients by enhancing the skills of neurosurgeons, thereby advancing the accuracy of diagnoses and predictions, and refining the choices made during surgical operations.[13] By integrating AI into various treatments, whether they involve direct intervention or not, neurosurgeons can offer optimal care to those under their treatment.

ML techniques have found extensive use in analyzing MRI data for glioma studies, proving highly beneficial.[14] The ML model used in four of the studies was ANN. Major outcome measures monitored were AUC, sensitivity, specificity, accuracy, and PPV. Out of the four mentioned studies, two by Kitajima et al.[9] and Yamashita et al.[10] showed that the AUC values were almost similar in both the ML models (AUC: 0.99, 0.95) and clinician models (AUC: 0.91, 0.9). This indicates that the AUC results were comparable between the ML and clinician models. However, sensitivity, specificity, PPV, and accuracy were found to be improved in the ML models compared to the clinician models. Therefore, we concluded that the ML model performed significantly better in terms of accuracy (P < 0.001) and no significant difference was found among both models in terms of sensitivity (P = 0.074), specificity (P = 77), and PPV (P = 17) better in posterior fossa tumor differentiation in pediatrics.[11,12]

ML technology effectively forecasts outcomes and aids in clinical decision-making within the field of neurosurgery.[15] Humans and machines can collaborate effectively to leverage the latest advancements in AI technology to elevate the standard of health-care provision across various stages, including image acquisition, processing, and interpretation, as well as patient allocation for surgeries, intraoperative procedures, postoperative monitoring, and enhancing access to top-tier health-care services.[16] Moreover, the application of AI can be extended to address neuromuscular and neurodegenerative disorders, such as Parkinson’s disease, currently managed through medication and deep brain stimulation.[17] In addition, AI can contribute to advancing our understanding of molecular cell biology, including areas like the subcellular trafficking of cargoes in individual neurons.[18,19]

Among all the included studies, 4 studies were categorized under tumor grading.[20-23] In these four studies, MRI techniques were used for classification, and ML models were evaluated against clinicians. Two studies showed improved outcomes for the ML models: (i) One study using an SVM model demonstrated a significant correlation with the clinician model in terms of accuracy (P = 0.001) and Kappa (P = 0.004),[21] and (ii) another study using an ANN model showed statistically significant results for both accuracy (P = 0.003) and AUC (P = 0.001).[23] The other two studies showed a nonsignificant correlation between the ML models and clinician models when using SVM and ANN models, with P = 1.00 for specificity and P = 0.009 for sensitivity,[20] and P = 0.56–0.97[22] for various applications. Additionally, three studies did not use radiological diagnostic tools but instead used ML based on ‘intracranial electroencephalography’ waves, which reflected improved accuracy in distinguishing epileptic patients’ single and multiunit spikes. In the same way, Sinha etal.[24] predicted “computerized tomography” anomalies through ANN technique in pediatric “traumatic brain injury” (TBI) patients. Hence, the study found a significant correlation between the improved diagnostic measures through AI application in comparison to the clinician or radiologist model in terms of accuracy (P < 0.05), sensitivity (P < 0.001), and DSF (P < 0.001).

In the prospective strategy development for treatment, 9 studies were selected, out of these 2 studies stated the selection of surgical patients among epileptic patients and pituitary macroadenoma patients simultaneously.[25,26] Natural language processing (NLP), a technique used to develop machine learning-based predictive models through written text processing, was employed to identify surgical site infections using electronic health data, demonstrating significant predictive value (P < 0.001). Similarly, MRI is used by radiologists to interpret the accuracy of the ML model which showed 93% accuracy and AUC (0.99) which aided in surgical design planning for treatment. Three studies emphasized neurosurgery planning through segmentation to mine tumor three-dimensional shape from MRI. Manual segmentation effectively about ML-oriented MRI segmentation was weighed with 2 studies assessing glioma and 1 assessing brainstem segmentation. The results demonstrated a significant impact of ML applications (P < 0.001) in terms of Dice similarity coefficient (DSC), percentage volume difference, and speed. Median segmentation time with the ML model was 36–40 seconds, compared to manual segmentation which took 20.2 minutes.[27] This indicates that the ML model was notably more efficient and accurate. Correspondingly, both segmentation studies with glioma showed potentially significant sensitivity for ML in contrast to clinical experts in neurosurgery.[28,29]

The localization of the epileptic zone was investigated in four studies[30–33] using functional MRI, fluorodeoxyglucose-positron emission tomography, and other input features. The studies utilized quadratic discriminant analysis, support vector machines (SVM), artificial neural networks (ANN), and linear discriminant analysis (LDA) as machine learning models, respectively. There was no potentially significant alteration observed based on signs and symptoms in “temporal lobe epilepsy (TLE)” from extratemporal lobe epilepsy. A momentous high accuracy was demonstrated by the ML model based on MRI in the differential diagnosis of both right and left-sided temporal lobe epilepsy (TLE).

Among four studies that examined outcome forecast, two studies[34,35] through MRI brain have evaluated predicted survival in glioma patients. The ML model used was SVM and FCM. One of these studies showed significantly improved AUC with the ML model when evaluated against the clinician model. Based on clinical presentation, another study predicted TBI patients in hospital survival. The ML model showed superiority in terms of AUC, sensitivity, and accuracy, while specificity was also found to be equivalent in this study.[35] Another study used SVM to estimate the burden of “perivascular space” enlargement in patients to predict hospital survival and outcomes.[36] Although this study reflected better AUC for neuroradiologists in comparison to AI applications, still this study was unable to prespecified presentation keys and was categorized as reporting bias due to unclear risk of discerning reportage.

In the study, ML models were observed; in addition to ML model input, diagnostic characteristics including MRI with or without other characteristics were also evaluated for diagnosis and prognosis through both clinician and ML models. Similarly, Haug’s[37] study also stated that in e-medical records, the use of ML to attain AI is centrally related to the extraction of predictive information of multifaceted health-care data through the ML model and its effective prognostic algorithm revolution. Precise patient outcome calculation can also help in primary preventive interference and assigning more effective health-care reserves to identify high-risk patients precisely.[37]

In the study, the implication of the ML model in neurosurgical patients is recurrently used for radiological data examination by mostly “ANN” means along with other neurosurgical applications. ANN-based supervised learning in the study was used to handle complex relationships between input and output. Emblem et al.[38] emphasized and explained the usage of each voxel as a single input piece and the abstraction of information extent through the ML model is enormously high making it more speedy and precise in comparison to human efforts which take more time.[38] Therefore, radiological and clinical data analysis by ML for diagnostic, segmentation, and outcome predictions served as one of the first ML applications that were correlated to actual clinical practices.

Although the study results demonstrated significant improvements in diagnosis, preoperative surgical decisions, and outcome predictions using the ML model, suggesting it could be more effective and time-saving compared to clinician diagnoses. However, it was clarified that despite the high accuracy of ML models in analysis, they ultimately enhance decision-making for clinicians and radiologists by providing more accurate and precise medical condition images of patients. This correlation between humans and machines also saves practitioners time in diagnosis and segmentation.[36]

A seamlessly integrated AI component within the imaging workflow would increase efficiency, reduce errors, and achieve objectives with minimal manual input by providing trained radiologists with prescreened images and identified features. Therefore, substantial efforts and policies are being put forward to facilitate technological advances related to AI in medical imaging. Almost all image-based radiology tasks are contingent upon the quantification and assessment of radiographic characteristics from images. These characteristics can be important for the clinical task at hand, that is, for the detection, characterization, or monitoring of diseases. The application of logic and statistical pattern recognition to problems in medicine has been proposed since the early 1960s.[34,35] As computers became more prevalent in the 1980s, the AI-powered automation of many clinical tasks has shifted radiology from a perceptual subjective craft to a quantitatively computable domain.[37,39] The rate at which AI is evolving radiology is parallel to that in other application areas and is proportional to the rapid growth of data and computational power. Health-care providers produce and apprehend huge amounts of data including tremendously valued signals and information through AI and ML technology at a far better pace outstanding what “traditional” methods of analysis for large quantitative data sets. ML has emerged as a recent approach that excels in integrating, investigating, and predicting outcomes based on large, heterogeneous datasets (cf. health informatics). Applications of DL in healthcare range from one-dimensional biosignal analysis[40] to predicting and assessing medical events such as seizures[41] or cardiac arrests,[42] computer-aided detection,[43] and improving diagnostic accuracy.[44] These advancements aid in survival analysis, facilitate clinical decision-making,[45] contribute to drug discovery,[46] and pharmacogenomics, aid in therapy selection,[47] enhance operational efficiency,[48] enable stratified care delivery,[49] and facilitate examination of electronic health records.[50]

Beyond AI’s application in medical imaging, its integration holds immense potential across various domains within health care. As AI continues to advance, its impact on medical practices and patient care is becoming increasingly profound. AI can enhance surgeons’ abilities across all stages of neurosurgery, including preoperative planning, intraoperative guidance, and postoperative monitoring.[51] A recent study by Kozel etal.[52] reported that ChatGPT-4 achieved an 85% accuracy rate for diagnoses and a 75% accuracy rate for treatment plans, whereas ChatGPT-3.5 had rates of 65% and 10%, respectively. Another review study revealed that ML methods have demonstrated their effectiveness in various aspects of neurosurgery, including identifying tumors, predicting surgical outcomes, forecasting seizure outcomes, anticipating aneurysms, and beyond, highlighting the extensive influence and potential of ML in enhancing patient care and outcomes within neurosurgical practice.[53]

The adoption of robotics in neurosurgery is on the rise, alongside the integration of AI in neurointensive care units for data analysis and patient management. In addition, AI holds the potential to predict patient outcomes. Various AI applications have been introduced in neurosurgery, with further advancements anticipated in the coming years.[54] In upcoming years, AI algorithms are likely to play a more significant role in clinical research, assessing the effectiveness of clinical and surgical procedures, and performing analyses in health economics.[55] It is anticipated that AI and ML play a prominent role in spinal care by developing algorithms to assist in decision-making regarding complex spinal conditions. However, integrating these technologies into clinical practice presents challenges, including ensuring data quality, overcoming integration obstacles, addressing data security concerns, and navigating ethical considerations.[56]

While the potential of AI in medicine and neurosurgery is promising, numerous hurdles must be overcome before its impact becomes evident in neurosurgical practice. These challenges range from ensuring patient privacy to securing access to reliable datasets and addressing the risk of surgeons overly relying on AI.[57] AI in neurosurgery seems to be heading toward a patient-centered model, focusing on aiding with clinical tasks and assisting in patient diagnosis and preoperative assessment.

The progression of AI presents opportunities to merge data-driven disciplines such as genomics with surgical practices, paving the way for tailored treatments and refined approaches to public health initiatives.[57] Upcoming health-care professionals must stay abreast of health-care advancements and adeptly integrate them into their practices to yield enhanced results.

One of the challenges regarding the implementation of ML models in clinical setup is that algorithm-driven mechanisms are complex and difficult to interpret and therefore referred to as the “black box technique.” On the other hand, if we check conventional statistical methodologies. Another challenge is that a large amount of completely categorized data are required for the generation of an ML model. Therefore in the research setup, AI application’s performance could be exceed expectations due to data high quality.[58]

To address these challenges, more studies are needed to explore further the connection between machines and humans, benefiting both clinicians and patients through influential analysis using ML and AI applications. This includes assessing outcomes after surgery planned with the aid of ML model segmentation, among other approaches. ML is the finest method for data integration and heterogeneous data. Radiological and clinical data are predictively correlated with clinical practices.
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Study limitations

It is important to highlight the limitations of this study, although it has provided valuable insights into the comparative efficacy of ML algorithms and clinical expertise in neurosurgical patient care. First, the scope of the literature search may be constrained by the selected timeframe and database, potentially overlooking relevant studies published outside these parameters. In addition, the relatively small number of studies included in this review may limit the depth of the analysis, affecting the generalizability of the findings.

Second, the quality and heterogeneity of the included studies may introduce variability and bias into the analysis. Variations in study design, patient populations, and outcome measures could limit the comparability and generalizability of findings across studies. While ML algorithms offer promising insights, their performance may be influenced by the quality and quantity of available data. Variability in data sources, data preprocessing methods, and feature selection techniques could affect algorithmic performance and generalizability.
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CONCLUSION

The present review study has shed light on the potential impact of ANN in neurosurgery, highlighting their ability to save time, enhance diagnosis, facilitate segmentation, aid in data interpretation, and improve prediction outcomes. Notably, the investigation reveals that ANN applications offer tangible benefits such as time-saving measures, heightened diagnostic accuracy, streamlined data segmentation and interpretation, and enhanced predictive capabilities. These findings suggest a profound shift in neurosurgical practice toward more efficient and effective patient care strategies.

Specifically, the study highlights how the integration of ANN technologies can expedite diagnostic processes, enabling clinicians to promptly identify and address neurological conditions. This accelerated diagnosis holds significant implications for patient outcomes, as timely interventions can mitigate the progression of diseases and improve overall treatment efficacy. In addition, the study highlights the role of ANN in refining decision-making processes by providing clinicians with valuable insights gleaned from sophisticated data analysis. Moreover, the review identifies promising avenues for future research within the field of AI and neurosurgery. By further refining and validating ANN algorithms, researchers can unlock new opportunities for enhancing diagnostic precision and treatment efficacy. Future investigations may also explore the integration of ANN technologies into larger patient cohorts and diverse neurosurgical procedures, thereby expanding the scope of their applicability in clinical settings.

Finally, the study also highlighted the importance of addressing critical challenges such as data quality, integration, security, and ethical considerations. By proactively addressing these obstacles, researchers can ensure the responsible and effective implementation of ANN technologies in neurosurgical practice, thereby maximizing their potential to revolutionize patient care and clinical outcomes.
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Author  Year Outcome Input ML models Outcome ML model Outcomein Sensitivity Specificity ~ P Validation Diagnosis/grading
characteristics used measures clinician model technique criteria
Diagnostic tumor classification
Kitajima 2009 Distinguishable Rathke’s Age, MRI ANN AuC 0.99 0.91 NA NA NA Loocv Histological diagnosis
etal. cleft pituitary adenoma,
craniopharyngioma
Yamashita 2008 Distinguishable glioma Age, history of ANN AuC 0.95 0.9 NA NA NA Loocv Histological diagnosis
etal. Grade II-V, lymphoma, brain  brain tumor,
metastases, malignant MRI
Bidiwala 2004 Differentiate pediatric Age, gender,  ANN 73%-86%, 57%-59%, 0.074,77, CV (NOS) Histological diagnosis
et al. posterior fossa tumors: symptoms, 86%-93%,  82%83%, 7
Medulloblastoma, cerebellar  signs, CT, MRI 73%-86% 62%-63%
astrocytoma, ependymoma
Arleetal. 1997 Differentiate pediatric posterior Age, gender,  ANN Accuracy 95% 73% <0001 5FCV Histological diagnosis
fossa tumors: Astrocytoma, MRI, MRS
PNET, ependymoma,/other
Tumor grading
Juntu et al. 2010 Differentiate between benign ~ MRI SVM, ANN  Accuracy, 93%, 94%, 90% 0.61 10-FCV Histological diagnosis
and MRI malignant soft-tissue sensitivity, 91%, 0.92 81% 0.009
tumors including neural tumors specificity, 92% 1.00
AuC 0.85 NA
Zhao etal. 2010 Classify glioma into Grades  Age, MRI SVM Accuracy 82% 65% 0001 5FCV  Histological diagnosis
I-Iv overall 82% 62% 09
Accuracy LGG 85% 66% 0.008
Accuracy HGG ~ 0.68 0.47 NA
Kappavalue  0.870 0.71 0.004
AuC
Emblem 2009 Classify glioma into Grade I-IV MRI FCM AuC NA NA 0.56-0.97 Histological diagnosis
et al.
Abdolmaleki 1997 Differentiate between low and MRI ANN Accuracy 89% 80% 0.003 Histological diagnosis
et al. high-grade astrocytomas AUC 0.91 0.84 <0.001
0.56
Other applications
Campillo 2013 Detection of surgical site Free text of NA Sensitivity 92% 23% <0.001 Patients identification
et al. infection HER PPV 40% 100% <0.001 through experts,
F-measure 0.56 0.38 ICD-10 code, or NLP
Duun- 2012 Automated seizure detection in iEEG SVM Sensitivity 96% 96% 1.00 NA
Henriksen epilepsy patients FDR 0.14 0.18 1.00
etal.
Tankus 2009 Classify spike clusters in iEEG LDA Accuracy 91%-92% 38%-69% <0.001 LOOCV  Synthetic database
etal. epilepsy
Sinha et al. 2001 Predict the presence of CT Age, gender,  ANN Accuracy 94% 92% <0.05 Imaging CT
abnormalities and DSF in symptoms, Sensitivity 82% 62% <0.001
pediatric TBI patients signs, history of Specificity 96% 96% 1.00
trauma PPV 75% 72% 073
NPV 97% 95% 0.25
LR+ 21 17.3 NA
LRAUC 0.18 0.39 NA
DP 0.93 0.90 NA
Sensitivity 275 2.10 NA
DSF 79% 54% <0.001
Prospective planning
Cohen et al. 2016 Identify surgical candidates Free text of SVM,NB  F-measure 0.77-0.82 0.71 <0.001 10-FCV Clinical outcome
among pediatric epilepsy HER
patients using NLP
Cuocolo 2020 Pituitary macroadenoma MRI and Accuracy 86% NA
et al. transsphenoidal Sensitivity 100%
surgery Specificity 87%
AUC 0.99
Segmentation
Dolzetal. 2016 Segmentation of brain stem MRI SVM, DL DSC 0.88-0.92  0.84-0.90 <0.001
in trigeminal neuralgia, brain pvD 3.1%-7.2% 19%-39% <0.001
metastases, brainstem Speed 36-40s 20.2 min <0.001
cavernoma patients
Emblem 2009 Tumor segmentation in glioma MRI FCcM Sensitivity 83% 59% <0.001
et al. patients Grade |-IV LGG 69% 57% 0.005
Sensitivity 66% 89% <0.001
HGG 73% 87% 004
PPV LGG
PPV HGG
Clarke et al. 1998 Tumor segmentation in glioma MRI FCcM AuC 0.96 0.28-0.49 NA
patients Grade |II-IV
Localizing epileptogenic zone
Chiang 2015 Differentiate L-TLE and RTLE  fMRI QDA Accuracy 96% 67% 0.05 LOOCV  VEEG
etal.
Kassahun 2014 Differentiate TLE and E-TLE Symptoms, SVM, GS,  Accuracy 66%-78% 56%-78% 0.41  CV(NOS) After the operation
et al. genetics ot disease remission
Kerretal. 2013 Differentiate L-TLE, R-TLE, and FDG-PET ANN Accuracy 76% 80% 0.53  LOOCV Physical and neuro
NES examination, VEEG
Lee etal. 2000 Localization of epileptogenic zone FDG-PET LDA, ANN  Accuracy 85% 81% 0.43 Two physicians census
‘Outcome prediction
Emblem 2015 Predict survival in glioma MRI SVMm AUC 6 months ~ 0.794 0.50-0.66 <0.01  10-FCV Survival
et al. Patients grade II-IV AUC 1year 0.762 0.50-0.66 <0.01
AUC 2 years 0.806 0.50-0.66 <0.01
AUC 3 years 0.851 0.50-0.66 <0.01
Rughani 2010 Predict in-hospital survivalin  Age, ANN Accuracy 88% 72% <0.001 Hospital survival
et al. TBI patients gender, vital Sensitivity 97% 73% <0.001
parameters Specificity 74% 75% 40
AuC 0.86 074 <0.001
Emblem 2009 Predict survival in glioma MRI FCM Log-rank value  14.4 10.6-12.8 NA Survival
etal. patients
Grade I-1V
Gonzilez 2077 SVM classifier binary classifier MRI AuC 0.9265 0.9813 NA Astratified Hospital survival
Castro et al. of the burden of enlarged PVS 5-FCV
as low or high repeating
ten times
SVM — Support vector machine, PVS — Perivascular spaces, MRI — Magnetic resonance imaging, TBI injury, DSF — Digital span forward, CT — Computerized tomography,

NLP — Natural language processing, L-TLE — Left temporal lobe epilepsy, R-TLE — Right temporal lobe epilepsy, E-TLE — Extratemporal temporal lobe epilepsy, MRS — Magnetic resonance
spectroscopy, IEEG — Intracranial electroencephalography, fMRI — Functional magnetic resonance imaging, PET — Positron emission tomography, ANN — Artificial neural network, ML — Machine
learning, FGM — Fuzzy C-mean, NA — Not available, LDA  Linear discriminant analysis, N8 — Naive Bayes, DL — Deep learning, QDA — Quadratic discriminant analysis, DT - Decision tree,

AUG - Area under curve, PPV — Positive predictive value, LGG — Low-grade glioma, HGG — High-grade glioma, NPV — Negative predictive value, DSC — Dice similarity coefficient, pVD — Percentage
volume difference, FGV — Fold cross-validation, VEEG — Video-electroencephalography, 1CD-10 — International Classification of Diseases-10, NOS — Newcastle-ottawa scale, LR — Likelihood ratio,
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