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Artificial intelligence and machine learning in 
neurosurgery: A review of diagnostic significance and 
treatment planning efficiency

Rani G. Ahmad
Department of Radiology, King Abdulaziz University, Jeddah, Saudi Arabia

Review Article

This review analyzes the significance of artificial intelligence (AI) and deep learning (DL) approaches used 
in radiology in neurosurgery patients and compares AI applications with human models to determine the 
applicability of AI in disease diagnosis, decision-making, and outcome prediction. A systematic review 
was conducted from 1997 to 2020 from the PubMed (MEDLINE) database. The search strategy adhered to 
guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The keywords 
used for the literature search included “Deep learning,” “Neurosurgery,” “Artificial Intelligence,” “Brain,” 
“Magnetic resonance imaging-MRI Brain,” and “Machine learning.” The studies focusing on the significance 
of DL and comparing AI applications with radiologists or clinical experts to enhance diagnostic protocols 
were included, whereas non-English articles, animal studies, articles lacking full text, and publications such 
as commentaries, technical notes, abstracts, editorials, opinions, and letters were excluded. A total of 24 
articles were included in the review. The P value was observed in 44 out of 63 outcome measures (70%), 
out of which in 26 out of 63 outturn measures, artificial application subset machine learning (ML) has a 
significant edge over clinical diagnosis (P < 0.05). The review highlights the potential impact of AI-driven 
advancements in clinical radiology on enhancing treatment plans for neurosurgery patients, emphasizing 
the benefits of early intervention, cost reduction, time-saving approaches, and judicious health-care 
resource utilization. The study’s limitations include potential constraints in identifying relevant literature 
due to the selected search scope and inclusion criteria, not including studies published outside the 
specified timeframe and database, and a small number of included studies. Consequently, there is a risk of 
overlooking innovative methodologies or ground-breaking studies contributing to a more comprehensive 
understanding of AI applications in neurosurgery. Furthermore, the exclusion of certain publication types, 
such as commentaries, and conference papers may limit the diversity of different perspectives. However, 
the study highlights the potential of ML in neurosurgery and the importance of addressing variability in 
study design, patient populations, and outcome measures in future research to enhance the applicability 
of AI-driven approaches in clinical practice. It is imperative to recognize and address these challenges to 
understand the opportunities and limitations inherent in the integration of AI in neurosurgical practice.
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INTRODUCTION

Artificial intelligence (AI) is a broader discipline and 
fast‑growing field that enables machines to mimic human 
cognitive behavior. These machines require human 
intelligence, computer algorithms, and recognizable 
rule‑based systems to display properties of  intelligence 
through driving knowledge from data. [1] Machine 
learning (ML), as a discipline of  AI, is a branch of  data 
science involving statistical model application to data using 
computers and enabling algorithms (computer programs) 
to learn associations of  predictive power from existing data 
without explicit programming to forecast new data points.[2] 
The integration of  AI and ML holds significant promise in 
neurosurgery, where precision and timely decision‑making 
are dominant.

The main objective of  this systematic review is to compare 
ML available algorithms performance in neurosurgery 
patients in comparison to clinical experts to gain insight 
into recent advancements in AI approaches to further 
strengthen neurosurgical patients’ perioperative care 
decision‑making. The implications of  such advancements 
extend far beyond solely the technical aspects, rather 
they bear the potential to create profound enhancements 
in patient outcomes, reductions in mortality rates, and 
advancements in neurosurgical practices. Through a 
comprehensive examination of  ML algorithms, this review 
aims to explain the extent to which AI‑driven approaches 
can enhance and refine perioperative care decision‑making 
processes in neurosurgery. By delineating the strengths 
and limitations of  AI applications in comparison to 
conventional clinical expertise, this investigation would 
provide critical insights into the transformative potential 
of  AI in enhancing the quality, efficiency, and efficacy of  
neurosurgical patient care.

LITERATURE REVIEW

ML algorithms can be further divided into supervised, 
reinforcement, and unsupervised learning algorithms. 
Supervised learning involves computer program training 
to associate data input and output through the output of  
interest analysis defined by the supervisor (ground truth) 
and label input data with required output. In unsupervised 
learning, data do not require explicit labeling and, based 
on the underlying distribution model, produces data 
representation.[3] Recent machine learning (ML) algorithms, 
specifically supervised learning algorithms, include artificial 
neural networks (ANNs), support vector machines (SVMs), 
decision trees, K‑nearest neighbors, linear discriminant 
analysis (LDA), and Naïve Bayes. In contrast, fuzzy 

C‑means (FCM) is an unsupervised learning algorithm. 
Deep learning (DL), a subclass of  ML, utilizes deep neural 
networks with many hidden layers. DL methods enable the 
use of  multiple layers to process large amounts of  data, 
allowing machines to discover the necessary representations 
for tasks such as classification and detection. It is made 
possible due to recent computational advancements and led 
to fundamental advancements in ML.[4,5] The relationship 
of  AI with its subsets: ML, DL, and neural networks is 
shown in Figure 1.

Since ML requires a large data set without explicit 
programming, in medical research and clinical neurosurgical 
care, ML still requires comprehensive validation before 
implementation. Neurosurgery research and clinical practice 
are ideal for ML model application as complex therapeutic 
and diagnostic modalities generate a huge amount of  data 
with a rich assortment which is ideal for AI tools, especially 
ML models to improve neurosurgical care through 
improved, précised, and efficient perioperative predictive 
analysis through integration of  all patient‑relevant factors 
including extraction of  deep features such as genomic 
data histological or radiological images, etc., in a way 
which is more complicated and complex for clinician to 
integrate risk factors and outcome predictors into single 
prognosis.[6‑8]

METHODS

Search approach
This systematic review adheres to the guidelines outlined 
by the “Preferred Reporting Items for Systematic 
Reviews and Meta‑Analyses” to comprehensively identify 

Figure 1: Relationship of artificial intelligence with its subsets machine 
learning, neural networks, and deep learning
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relevant studies about the integration of  DL models into 
neurosurgery and their comparison with the expertise of  
radiologists or clinical professionals to improve diagnostic 
protocols.

The search strategy primarily involves querying the 
PubMed and MEDLINE databases. The research question 
guiding the literature search has been refined to focus 
on assessing “The significance and impact of  artificial 
intelligence in neurosurgical patient care, specifically 
examining deep learning models, and comparing their 
effectiveness with clinical experts.” The search strategy 
employs a comprehensive set of  terms relevant to the 
study domain, including “Deep learning,” “Neurosurgery,” 
“Artificial Intelligence,” “Brain,” “Magnetic resonance 
imaging‑MRI Brain,” and “Machine learning.”

Inclusion and exclusion criteria
To ensure the inclusion of  pertinent studies, eligibility 
criteria have been meticulously established. The search 
encompasses articles published between 1997 and 2020, 
with a strict language restriction to English. Studies that 
were included focused exclusively on neurosurgical patients, 
specifically targeting those that compare AI applications 
using machine learning (ML) with clinical expert practices. 
Neurosurgical patients were categorized as individuals 
eligible for neurosurgical treatment at any stage of  their 
illness. There are no predefined limitations regarding 
disease diagnosis, screening, prognosis, treatment, or 
outcome.

Exclusion criteria encompass articles in languages 
other than English, animal studies, conference papers, 
books/book chapters, and those lacking full‑text 
availability. In addition, the search strategy is augmented 
by manually screening the reference lists of  potentially 
eligible articles. The duplicated studies were removed and 
the titles/abstracts were reviewed to identify papers that 

are pertinent to the present study’s topic. Table 1 outlines 
the PICO elements guiding the search strategy. It helps 
clarify the specific aspects considered in the search strategy, 
guiding the selection of  relevant studies.

Assessing eligibility
In assessing the eligibility of  studies for inclusion in 
this systematic review, stringent criteria were established 
to ensure both relevance and quality. First, all clinical 
studies providing data on the significance and impact of  
AI in neurosurgery patients were considered eligible for 
inclusion. These studies were required to directly address 
the application of  AI in neurosurgical patient care, 
encompassing areas such as diagnostic accuracy, treatment 
planning, or outcome prediction. In addition, to maintain 
consistency and accuracy in evaluation, only articles written 
in English were deemed suitable for inclusion, reflecting the 
authors’ proficiency in the language. This criterion aimed 
to facilitate thorough assessment and interpretation of  
study content. Conversely, certain types of  publications, 
including commentaries, technical notes, abstracts, 
editorials, opinions, and letters, were excluded from 
consideration. Such formats typically lack original research 
findings or provide insufficient data for systematic review 
purposes. Furthermore, research involving biomechanical 
assessments on animals and in vitro studies were excluded, 
as they did not align with the specific focus on clinical 
applications of  AI in neurosurgery patients. Through the 
application of  these inclusion and exclusion criteria, the 
systematic review sought to ensure the selection of  only the 
most relevant and high‑quality studies, thereby enhancing 
the validity and reliability of  the review’s findings.

Study selection and data collection
The quality analysis of  selected studies was ranked by two 
assessors individualistically, and in case of  any disparity, 
it was fixed through dialog. The data for each included 
study consisted of  the following details author and 
year of  publication, output and input features, outcome 
measures for machine model and clinician model (natural 
intelligence), P value, and validation methods. Due to 
data heterogeneity, quantitative synthesis was considered 
inappropriate. Instead, a qualitative assessment of  outcome 
risk of  bias was conducted using narrative analysis.

Initially, titles of  articles were manually screened, and those 
relevant to the research topic were considered for further 
evaluation. Subsequently, if  the abstracts corresponded 
with the study’s focus, the full texts of  the articles were 
retrieved for thorough examination. Articles lacking 
full‑text availability were excluded from the analysis at this 
stage. In addition, a manual screening of  bibliographies 

Table 1: Population, Intervention, Comparator, and Outcome 
elements for search strategy
Conditions Qualifications

Main 
question

Significance and impact of AI in neurosurgery 
patients and its comparison with clinicians to 
understand current best practices

Population Diagnostics images obtained from neurosurgery 
human subjects

Intervention AI algorithms found a diagnostic model
Comparator Brain MRI, CT, clinical examination by clinicians, etc.
Outcome Outcome measures of proposed AI model (ML model) 

in terms of AUC, sensitivity, accuracy, specificity, 
PPV, P-value, validation method

AI – Artificial intelligence, MRI – Magnetic resonance imaging, 
CT – Computerized tomography, ML – Machine learning, AUC – Area 
under curve, PPV – Positive predictive value
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was conducted to identify additional relevant studies. All 
articles identified through these procedures underwent 
comprehensive evaluation, with their eligibility for 
inclusion being deliberated among the researchers to ensure 
consensus.

Data items
Two assessors independently conducted a quality analysis 
of  the selected studies, resolving any discrepancies through 
dialog and consensus building to ensure the reliability and 
validity of  the quality assessment. Data extraction from 
each included study was thorough, capturing key details 
such as the author and year of  publication, output and 
input features, outcome measures for both machine and 
clinician models, P value, and validation methods used. 
This comprehensive approach aimed to provide a detailed 
understanding of  each study’s methodology and findings, 
facilitating a robust analysis in line with the review’s 
objectives. Given the heterogeneity of  the collected data, 
quantitative synthesis was deemed inappropriate, and 
instead, a qualitative assessment of  the studies’ outcomes 
and risk of  bias was conducted through narrative synthesis. 
The study selection process began with the manual 
screening of  article titles, followed by the examination of  
abstracts corresponding with the study’s focus. Full‑text 
retrieval was conducted for articles meeting the inclusion 
criteria, while those lacking full‑text availability were 
excluded. In addition, a manual screening of  bibliographies 
was performed to identify any additional relevant studies. 
Throughout the selection process, all articles underwent 
a comprehensive evaluation to determine their eligibility 
for inclusion, with the research team deliberating to ensure 
consensus and minimize bias.

Data analysis
The included studies’ applicability and risks of  biases were 
evaluated using the “Quality Assessment of  Diagnostic 
Accuracy Studies”‑2 tool. This evaluation assessed the 
risk of  bias in four domains: patient selection, index test, 
reference standard, and flow and timing. Each domain 
was assessed for risk of  bias and applicability, with 
judgments categorized as “low,” “unclear,” or “high” risk. 
Disagreements between assessors were resolved through 
discussion.

RESULTS

In this systematic review, a total of  6652 citations 
were retrieved during the initial search from both 
PubMed (MEDLINE) 1452 citations and from additional 
database 5200 citations. However, after detailed screening, 
1100 nonduplicate citations were identified. Five thousand 

four hundred and sixty‑five articles were excluded based on 
their abstract and titles, resulting in 87 articles being studied 
for their full‑text details, 53 articles were excluded after 
full‑text screening, and 10 articles were excluded during 
data extraction as no comparison with clinical experts 
was found. Finally, a total of  24 articles were included for 
the review to assess the significance of  AI applications 
in neurosurgical patients’ diagnosis, prognosis, and 
preoperative preparation for treatment. The flow diagram 
of  the search strategy and inclusion criteria for this review 
study is illustrated in Figure 2.

Considering the statistical measures, the most frequent 
measure used was accuracy 12 (50% of  the studies), 
followed by area under curve (AUC) 10 (41.7%), sensitivity 
8 (33%), and specificity 12 (20.8%), respectively, both 
for the ML and clinical model [Figure 3]. The P value 
was observed in 44 outturn measures including accuracy, 
sensitivity, specificity, AUC, positive predictive value (PPV), 
high‑grade glioma, false discovery rate, negative predictive 
value, digital span forward [DSF], F‑measure, speed, dice 
similarity coefficient [DSC], and low‑grade glioma) out of  
overall 63 outcome measures (70%), out of  which in 26 
out of  63 outturn measures, artificial application subset 
ML has a significant edge over clinical diagnosis (P < 0.05) 
[Figures 4 and 5].

Table 2 shows a description of  the machine models used 
to evaluate the significance of  AI in clinical radiology. 
The table evaluated recruited studies for diagnostic input 
tools used, their ML model used, clinical expert outcome, 
the outcome of  the ML model, validation methodology, 
statistical variables, and diagnostic or grading criteria. Out 
of  24 studies, 12 studies have emphasized the diagnostic 
capability of  AI applications using magnetic resonance 
imaging (MRI) brain as a primary diagnostic parameter in 
comparison to clinical experts. Out of  these 12 studies, 
4 studies[9‑12] focused on tumor diagnostic cataloging 
among the pediatric population through differentiation of  
“posterior fossa tumor.” The major input characteristics 
applied to these were brain MRI along with age and gender 
in Table 2.

DISCUSSION

The objective of  this systemic review was to evaluate 
the significance and impact of  AI analogous enactment 
“ML models” in neurosurgery patient pollution to help 
attain better treatment plans. The use of  AI applications 
including ML and “CNNs” if  provided with adequate 
teaching datasets could result in self‑explanatory patient 
beneficiary performances along with expertise from clinical 
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experts. This ultimately improves diagnostic accuracy 
which ultimately aids in correct decisions and treatment 
plans for patients.

AI possesses the capability to enhance the results for 
patients by enhancing the skills of  neurosurgeons, thereby 
advancing the accuracy of  diagnoses and predictions, and 
refining the choices made during surgical operations.[13] By 
integrating AI into various treatments, whether they involve 
direct intervention or not, neurosurgeons can offer optimal 
care to those under their treatment.

ML techniques have found extensive use in analyzing MRI 
data for glioma studies, proving highly beneficial.[14] The ML 
model used in four of  the studies was ANN. Major outcome 
measures monitored were AUC, sensitivity, specificity, 
accuracy, and PPV. Out of  the four mentioned studies, two 
by Kitajima et al.[9] and Yamashita et al.[10] showed that the 
AUC values were almost similar in both the ML models 
(AUC: 0.99, 0.95) and clinician models (AUC: 0.91, 0.9). 
This indicates that the AUC results were comparable 

between the ML and clinician models. However, sensitivity, 
specificity, PPV, and accuracy were found to be improved 
in the ML models compared to the clinician models.
Therefore, we concluded that the ML model performed 
significantly better in terms of  accuracy (P < 0.001) and 
no significant difference was found among both models in 
terms of  sensitivity (P = 0.074), specificity (P = 77), and 
PPV (P = 17) better in posterior fossa tumor differentiation 
in pediatrics.[11,12]

ML technology effectively forecasts outcomes and aids in 
clinical decision‑making within the field of  neurosurgery.[15] 
Humans and machines can collaborate effectively to leverage 
the latest advancements in AI technology to elevate 
the standard of  health‑care provision across various 
stages, including image acquisition, processing, and 
interpretation, as well as patient allocation for surgeries, 
intraoperative procedures, postoperative monitoring, 
and enhancing access to top‑tier health‑care services.[16] 
Moreover, the application of  AI can be extended to address 
neuromuscular and neurodegenerative disorders, such as 
Parkinson’s disease, currently managed through medication 

Figure 5: Area under curve comparison among machine learning and 
clinician model

Figure 4: Sensitivity comparison among machine learning and clinician 
model

Figure 2: Flow diagram for the searches and inclusion criteria in the 
study

Figure 3: Outcome measures for machine learning model
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and deep brain stimulation.[17] In addition, AI can contribute 
to advancing our understanding of  molecular cell biology, 
including areas like the subcellular trafficking of  cargoes 
in individual neurons.[18,19]

Among all the included studies, 4 studies were categorized 
under tumor grading.[20‑23] In these four studies, MRI 
techniques were used for classification, and ML models 
were evaluated against clinicians. Two studies showed 
improved outcomes for the ML models: (i) One study 
using an SVM model demonstrated a significant correlation 
with the clinician model in terms of  accuracy (P = 0.001) 
and Kappa (P = 0.004),[21] and (ii) another study using an 
ANN model showed statistically significant results for 
both accuracy (P = 0.003) and AUC (P = 0.001).[23] The 
other two studies showed a nonsignificant correlation 
between the ML models and clinician models when using 
SVM and ANN models, with P = 1.00 for specificity 
and P = 0.009 for sensitivity,[20] and P = 0.56–0.97[22] for 
various applications. Additionally, three studies did not use 
radiological diagnostic tools but instead used ML based 
on ‘intracranial electroencephalography’ waves, which 
reflected improved accuracy in distinguishing epileptic 
patients’ single and multiunit spikes. In the same way, Sinha 
et al.[24] predicted “computerized tomography” anomalies 
through ANN technique in pediatric “traumatic brain 
injury” (TBI) patients. Hence, the study found a significant 
correlation between the improved diagnostic measures 
through AI application in comparison to the clinician 
or radiologist model in terms of  accuracy (P < 0.05), 
sensitivity (P < 0.001), and DSF (P < 0.001).

In the prospective strategy development for treatment, 
9 studies were selected, out of  these 2 studies stated the 
selection of  surgical patients among epileptic patients 
and pituitary macroadenoma patients simultaneously.[25,26] 
Natural language processing (NLP), a technique used to 
develop machine learning‑based predictive models through 
written text processing, was employed to identify surgical 
site infections using electronic health data, demonstrating 
significant predictive value (P < 0.001). Similarly, MRI 
is used by radiologists to interpret the accuracy of  the 
ML model which showed 93% accuracy and AUC (0.99) 
which aided in surgical design planning for treatment. 
Three studies emphasized neurosurgery planning 
through segmentation to mine tumor three‑dimensional 
shape from MRI. Manual segmentation effectively about 
ML‑oriented MRI segmentation was weighed with 2 studies 
assessing glioma and 1 assessing brainstem segmentation. 
The results demonstrated a significant impact of  ML 
applications (P < 0.001) in terms of  Dice similarity 
coefficient (DSC), percentage volume difference, and Ta
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speed. Median segmentation time with the ML model was 
36–40 seconds, compared to manual segmentation which 
took 20.2 minutes.[27] This indicates that the ML model 
was notably more efficient and accurate.  Correspondingly, 
both segmentation studies with glioma showed potentially 
significant sensitivity for ML in contrast to clinical experts 
in neurosurgery.[28,29]

T he  loca l i za t ion  of  the  ep i l ep t i c  zone  was 
investigated in four studies[30‑33] using functional MRI, 
fluorodeoxyglucose‑positron emission tomography, 
and other input features. The studies utilized quadratic 
discriminant analysis, support vector machines (SVM), 
artificial neural networks (ANN), and linear discriminant 
analysis (LDA) as machine learning models, respectively. 
There was no potentially significant alteration observed 
based on signs and symptoms in “temporal lobe 
epilepsy (TLE)” from extratemporal lobe epilepsy. A 
momentous high accuracy was demonstrated by the ML 
model based on MRI in the differential diagnosis of  both 
right and left‑sided temporal lobe epilepsy (TLE).

Among four studies that examined outcome forecast, two 
studies[34,35] through MRI brain have evaluated predicted 
survival in glioma patients. The ML model used was SVM 
and FCM. One of  these studies showed significantly 
improved AUC with the ML model when evaluated against 
the clinician model. Based on clinical presentation, another 
study predicted TBI patients in hospital survival. The ML 
model showed superiority in terms of  AUC, sensitivity, and 
accuracy, while specificity was also found to be equivalent 
in this study.[35] Another study used SVM to estimate the 
burden of  “perivascular space” enlargement in patients 
to predict hospital survival and outcomes.[36] Although 
this study reflected better AUC for neuroradiologists in 
comparison to AI applications, still this study was unable 
to prespecified presentation keys and was categorized as 
reporting bias due to unclear risk of  discerning reportage.

In the study, ML models were observed; in addition to 
ML model input, diagnostic characteristics including MRI 
with or without other characteristics were also evaluated 
for diagnosis and prognosis through both clinician and 
ML models. Similarly, Haug’s[37] study also stated that in 
e‑medical records, the use of  ML to attain AI is centrally 
related to the extraction of  predictive information of  
multifaceted health‑care data through the ML model and 
its effective prognostic algorithm revolution. Precise patient 
outcome calculation can also help in primary preventive 
interference and assigning more effective health‑care 
reserves to identify high‑risk patients precisely.[37]

In the study, the implication of  the ML model in 
neurosurgical patients is recurrently used for radiological 
data examination by mostly “ANN” means along with other 
neurosurgical applications. ANN‑based supervised learning 
in the study was used to handle complex relationships 
between input and output. Emblem et al.[38] emphasized 
and explained the usage of  each voxel as a single input 
piece and the abstraction of  information extent through 
the ML model is enormously high making it more speedy 
and precise in comparison to human efforts which take 
more time.[38] Therefore, radiological and clinical data 
analysis by ML for diagnostic, segmentation, and outcome 
predictions served as one of  the first ML applications that 
were correlated to actual clinical practices.

Although the study results demonstrated significant 
improvements in diagnosis, preoperative surgical decisions, 
and outcome predictions using the ML model, suggesting 
it could be more effective and time‑saving compared to 
clinician diagnoses. However, it was clarified that despite 
the high accuracy of  ML models in analysis, they ultimately 
enhance decision‑making for clinicians and radiologists by 
providing more accurate and precise medical condition 
images of  patients. This correlation between humans and 
machines also saves practitioners time in diagnosis and 
segmentation.[36]

A seamlessly integrated AI component within the imaging 
workflow would increase efficiency, reduce errors, and 
achieve objectives with minimal manual input by providing 
trained radiologists with prescreened images and identified 
features. Therefore, substantial efforts and policies are 
being put forward to facilitate technological advances 
related to AI in medical imaging. Almost all image‑based 
radiology tasks are contingent upon the quantification and 
assessment of  radiographic characteristics from images. 
These characteristics can be important for the clinical 
task at hand, that is, for the detection, characterization, 
or monitoring of  diseases. The application of  logic and 
statistical pattern recognition to problems in medicine has 
been proposed since the early 1960s.[34,35] As computers 
became more prevalent in the 1980s, the AI‑powered 
automation of  many clinical tasks has shifted radiology 
from a perceptual subjective craft to a quantitatively 
computable domain.[37,39] The rate at which AI is evolving 
radiology is parallel to that in other application areas and is 
proportional to the rapid growth of  data and computational 
power. Health‑care providers produce and apprehend huge 
amounts of  data including tremendously valued signals 
and information through AI and ML technology at a far 
better pace outstanding what “traditional” methods of  
analysis for large quantitative data sets. ML has emerged as 
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a recent approach that excels in integrating, investigating, 
and predicting outcomes based on large, heterogeneous 
datasets (cf. health informatics). Applications of  DL in 
healthcare range from one‑dimensional biosignal analysis[40] 
to predicting and assessing medical events such as 
seizures[41] or cardiac arrests,[42] computer‑aided detection,[43] 
and improving diagnostic accuracy.[44] These advancements 
aid in survival analysis, facilitate clinical decision‑making,[45] 
contribute to drug discovery,[46] and pharmacogenomics, 
aid in therapy selection,[47] enhance operational efficiency,[48] 

enable stratified care delivery,[49] and facilitate examination 
of  electronic health records.[50]

Beyond AI’s application in medical imaging, its integration 
holds immense potential across various domains within 
health care. As AI continues to advance, its impact on 
medical practices and patient care is becoming increasingly 
profound. AI can enhance surgeons’ abilities across all 
stages of  neurosurgery, including preoperative planning, 
intraoperative guidance, and postoperative monitoring.[51] 
A recent study by Kozel et al.[52] reported that ChatGPT‑4 
achieved an 85% accuracy rate for diagnoses and a 75% 
accuracy rate for treatment plans, whereas ChatGPT‑3.5 
had rates of  65% and 10%, respectively. Another review 
study revealed that ML methods have demonstrated 
their effectiveness in various aspects of  neurosurgery, 
including identifying tumors, predicting surgical outcomes, 
forecasting seizure outcomes, anticipating aneurysms, and 
beyond, highlighting the extensive influence and potential 
of  ML in enhancing patient care and outcomes within 
neurosurgical practice.[53]

The adoption of  robotics in neurosurgery is on the rise, 
alongside the integration of  AI in neurointensive care units 
for data analysis and patient management. In addition, AI 
holds the potential to predict patient outcomes. Various 
AI applications have been introduced in neurosurgery, 
with further advancements anticipated in the coming 
years.[54] In upcoming years, AI algorithms are likely to 
play a more significant role in clinical research, assessing 
the effectiveness of  clinical and surgical procedures, and 
performing analyses in health economics.[55] It is anticipated 
that AI and ML play a prominent role in spinal care 
by developing algorithms to assist in decision‑making 
regarding complex spinal conditions. However, integrating 
these technologies into clinical practice presents challenges, 
including ensuring data quality, overcoming integration 
obstacles, addressing data security concerns, and navigating 
ethical considerations.[56]

While the potential of  AI in medicine and neurosurgery is 
promising, numerous hurdles must be overcome before its 

impact becomes evident in neurosurgical practice. These 
challenges range from ensuring patient privacy to securing 
access to reliable datasets and addressing the risk of  
surgeons overly relying on AI.[57] AI in neurosurgery seems 
to be heading toward a patient‑centered model, focusing on 
aiding with clinical tasks and assisting in patient diagnosis 
and preoperative assessment.

The progression of  AI presents opportunities to merge 
data‑driven disciplines such as genomics with surgical 
practices, paving the way for tailored treatments and 
refined approaches to public health initiatives.[57] Upcoming 
health‑care professionals must stay abreast of  health‑care 
advancements and adeptly integrate them into their 
practices to yield enhanced results.

One of  the challenges regarding the implementation of  ML 
models in clinical setup is that algorithm‑driven mechanisms 
are complex and difficult to interpret and therefore referred 
to as the “black box technique.” On the other hand, if  
we check conventional statistical methodologies. Another 
challenge is that a large amount of  completely categorized 
data are required for the generation of  an ML model. 
Therefore in the research setup, AI application’s performance 
could be exceed expectations due to data high quality.[58]

To address these challenges, more studies are needed to 
explore further the connection between machines and 
humans, benefiting both clinicians and patients through 
influential analysis using ML and AI applications. This 
includes assessing outcomes after surgery planned 
with the aid of  ML model segmentation, among other 
approaches. ML is the finest method for data integration 
and heterogeneous data. Radiological and clinical data are 
predictively correlated with clinical practices.

Study limitations
It is important to highlight the limitations of  this 
study, although it has provided valuable insights into 
the comparative efficacy of  ML algorithms and clinical 
expertise in neurosurgical patient care. First, the scope of  
the literature search may be constrained by the selected 
timeframe and database, potentially overlooking relevant 
studies published outside these parameters. In addition, 
the relatively small number of  studies included in this 
review may limit the depth of  the analysis, affecting the 
generalizability of  the findings.

Second, the quality and heterogeneity of  the included 
studies may introduce variability and bias into the 
analysis. Variations in study design, patient populations, 
and outcome measures could limit the comparability 
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and generalizability of  findings across studies. While ML 
algorithms offer promising insights, their performance may 
be influenced by the quality and quantity of  available data. 
Variability in data sources, data preprocessing methods, 
and feature selection techniques could affect algorithmic 
performance and generalizability.

CONCLUSION

The present review study has shed light on the potential 
impact of  ANN in neurosurgery, highlighting their ability 
to save time, enhance diagnosis, facilitate segmentation, 
aid in data interpretation, and improve prediction 
outcomes. Notably, the investigation reveals that ANN 
applications offer tangible benefits such as time‑saving 
measures, heightened diagnostic accuracy, streamlined data 
segmentation and interpretation, and enhanced predictive 
capabilities. These findings suggest a profound shift in 
neurosurgical practice toward more efficient and effective 
patient care strategies.

Specifically, the study highlights how the integration of  
ANN technologies can expedite diagnostic processes, 
enabling clinicians to promptly identify and address 
neurological conditions. This accelerated diagnosis holds 
significant implications for patient outcomes, as timely 
interventions can mitigate the progression of  diseases and 
improve overall treatment efficacy. In addition, the study 
highlights the role of  ANN in refining decision‑making 
processes by providing clinicians with valuable insights 
gleaned from sophisticated data analysis. Moreover, the 
review identifies promising avenues for future research 
within the field of  AI and neurosurgery. By further refining 
and validating ANN algorithms, researchers can unlock 
new opportunities for enhancing diagnostic precision and 
treatment efficacy. Future investigations may also explore 
the integration of  ANN technologies into larger patient 
cohorts and diverse neurosurgical procedures, thereby 
expanding the scope of  their applicability in clinical settings.

Finally, the study also highlighted the importance 
of  addressing critical challenges such as data quality, 
integration, security, and ethical considerations. By 
proactively addressing these obstacles, researchers can 
ensure the responsible and effective implementation of  
ANN technologies in neurosurgical practice, thereby 
maximizing their potential to revolutionize patient care 
and clinical outcomes.
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